Hepatitis Monthly

Published by: Kowsar

Activation of Nrf2-Antioxidant Response Element Mediated Glutamate Cysteine Ligase Expression in Hepatoma Cell line by Homocysteine

Monireh Mani 1 , Shahnaz Khaghani 1 , * , Taghi Gol Mohammadi 1 , Zahra Zamani 2 , Kayhan Azadmanesh 3 , Reza Meshkani 1 , Parvin Pasalar 1 and Ehsan Mostafavi 4
Authors Information
1 Department of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, IR Iran
2 Department of Biochemistry, Pasteur Institute, Tehran, IR Iran
3 Department of Virology, Pasteur Institute, Tehran, IR Iran
4 Department of Epidemiology, Pasteur Institute, Tehran, IR Iran
Article information
  • Hepatitis Monthly: May 01, 2013, 13 (5); e8394
  • Published Online: May 2, 2013
  • Article Type: Research Article
  • Received: October 1, 2012
  • Revised: December 11, 2012
  • Accepted: December 31, 2012
  • DOI: 10.5812/hepatmon.8394

To Cite: Mani M, Khaghani S, Gol Mohammadi T, Zamani Z, Azadmanesh K, et al. Activation of Nrf2-Antioxidant Response Element Mediated Glutamate Cysteine Ligase Expression in Hepatoma Cell line by Homocysteine, Hepat Mon. 2013 ;13(5):e8394. doi: 10.5812/hepatmon.8394.

Abstract
Copyright © 2013, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem. 2003; 36(6): 431-41[PubMed]
  • 2. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992; 12: 279-98[DOI][PubMed]
  • 3. El Oudi M, Aouni Z, Mazigh C, Machghoul S. Total homocysteine levels and cardiovascular risk factors in healthy Tunisians. East Mediterr Health J. 2011; 17(12): 937-42[PubMed]
  • 4. Avila MA, Berasain C, Torres L, Martin-Duce A, Corrales FJ, Yang H, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol. 2000; 33(6): 907-14[PubMed]
  • 5. Medici V, Peerson JM, Stabler SP, French SW, Gregory JF, 3rd, Virata MC, et al. Impaired homocysteine transsulfuration is an indicator of alcoholic liver disease. J Hepatol. 2010; 53(3): 551-7[DOI][PubMed]
  • 6. Mudd SH, Uhlendorf BW, Freeman JM, Finkelstein JD, Shih VE. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity. Biochem Biophys Res Commun. 1972; 46(2): 905-12[PubMed]
  • 7. Kang SS, Wong PW, Norusis M. Homocysteinemia due to folate deficiency. Metabolism. 1987; 36(5): 458-62
  • 8. Mudd S, Levy H, Skovby F. Disorders of transsulfuration. The metabolic and molecular bases of inherited disease. 1995; 1: 1279-327
  • 9. Gaull G, Sturman JA, Schaffner F. Homocystinuria due to cystathionine synthase deficiency: enzymatic and ultrastructural studies. J Pediatr. 1974; 84(3): 381-90[PubMed]
  • 10. Adinolfi LE, Ingrosso D, Cesaro G, Cimmino A, D'Anto M, Capasso R, et al. Hyperhomocysteinemia and the MTHFR C677T polymorphism promote steatosis and fibrosis in chronic hepatitis C patients. Hepatology. 2005; 41(5): 995-1003[DOI][PubMed]
  • 11. Robert K, Nehme J, Bourdon E, Pivert G, Friguet B, Delcayre C, et al. Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology. 2005; 128(5): 1405-15[PubMed]
  • 12. Bharathi Devi SR, Suganeswari G, Sharma T, Thennarasu M, Angayarkanni N. Homocysteine induces oxidative stress in young adult central retinal vein occlusion. Br J Ophthalmol. 2012; 96(8): 1122-6[DOI][PubMed]
  • 13. Dietrich-Muszalska A, Malinowska J, Olas B, Glowacki R, Bald E, Wachowicz B, et al. The oxidative stress may be induced by the elevated homocysteine in schizophrenic patients. Neurochem Res. 2012; 37(5): 1057-62[DOI][PubMed]
  • 14. Hudson FN, Kavanagh TJ. Cloning and characterization of the proximal promoter region of the mouse glutamate-L-cysteine ligase regulatory subunit gene. Biochim Biophys Acta. 2000; 1492(2-3): 447-51[PubMed]
  • 15. Bea F, Hudson FN, Chait A, Kavanagh TJ, Rosenfeld ME. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res. 2003; 92(4): 386-93[DOI][PubMed]
  • 16.
  • 17. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006; 46: 113-40[DOI][PubMed]
  • 18. Au-Yeung KK, Woo CW, Sung FL, Yip JC, Siow YL, O K. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res. 2004; 94(1): 28-36[DOI][PubMed]
  • 19. Wang G, O K. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: possible involvement of oxygen free radicals. Biochem J. 2001; 357: 233-40[PubMed]
  • 20. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006; 290(5)-51[DOI][PubMed]
  • 21. Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol. 2006; 45(1): 117-26[DOI][PubMed]
  • 22. Perna A, Ingrosso D, De Santo N. Homocysteine and oxidative stress. Amino Acids. 2003; 25(3): 409-17
  • 23. Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, et al. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys. 2004; 423(1): 116-25[DOI][PubMed]
  • 24. Bea F, Hudson FN, Neff-Laford H, White CC, Kavanagh TJ, Kreuzer J, et al. Homocysteine stimulates antioxidant response element-mediated expression of glutamate-cysteine ligase in mouse macrophages. Atherosclerosis. 2009; 203(1): 105-11[DOI][PubMed]
  • 25. Huang CS, Lii CK, Lin AH, Yeh YW, Yao HT, Li CC, et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch Toxicol. 2013; 87(1): 167-78[DOI][PubMed]
  • 26. Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal. 2006; 8(1-2): 99-106[DOI][PubMed]
  • 27. Kwak MK, Wakabayashi N, Kensler TW. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res. 2004; 555(1-2): 133-48[DOI][PubMed]
  • 28. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006; 8(1-2): 76-87[DOI][PubMed]
  • 29. Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des. 2004; 10(8): 879-91[PubMed]
  • 30. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003; 278(14): 12029-38[DOI][PubMed]
  • 31. Ramani K, Tomasi ML, Yang H, Ko K, Lu SC. Mechanism and significance of changes in glutamate-cysteine ligase expression during hepatic fibrogenesis. J Biol Chem. 2012; 287(43): 36341-55[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments