Hepatitis Monthly

Published by: Kowsar

Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications

Sara Mohammadzadeh 1 , Alireza Khabiri 2 , Farzin Roohvand 3 , * , Arash Memarnejadian 4 , Ali Hatef Salmanian 5 , Soheila Ajdary 6 and Parastoo Ehsani 1 , *
Authors Information
1 Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
2 Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
3 Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
4 Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
5 Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
6 Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
Corresponding Authors:
Article information
  • Hepatitis Monthly: November 30, 2014, 14 (11); e20524
  • Published Online: November 24, 2014
  • Article Type: Research Article
  • Received: May 25, 2014
  • Revised: September 29, 2014
  • Accepted: October 23, 2014
  • DOI: 10.5812/hepatmon.20524

To Cite: Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Hatef Salmanian A, et al. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications, Hepat Mon. 2014 ; 14(11):e20524. doi: 10.5812/hepatmon.20524.

Copyright © 2014, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Mirzazadeh A, Salimzadeh H, Arabi M, Navadeh S, Hajarizadeh B, Haghdoost AA. Trends of Obesity in Iranian Adults from 1990s to late 2000s; a Systematic Review and Meta-analysis. Middle East J Dig Dis. 2013; 5(3): 151-7[PubMed]
  • 2. Chevaliez S, Pawlotsky JM. Virology of hepatitis C virus infection. Best Pract Res Clin Gastroenterol. 2012; 26(4): 381-9[DOI][PubMed]
  • 3. Fauvelle C, Lepiller Q, Felmlee DJ, Fofana I, Habersetzer F, Stoll-Keller F, et al. Hepatitis C virus vaccines--progress and perspectives. Microb Pathog. 2013; 58: 66-72[DOI][PubMed]
  • 4. Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, Part one: Advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat. 2011; 21(12): 1811-30[DOI][PubMed]
  • 5. Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities. Expert Opin Ther Pat. 2012; 22(4): 391-415[DOI][PubMed]
  • 6. Hartoonian C, Sepehrizadeh Z, Tabatabai Yazdi M, Jang YS, Langroudi L, Amir Kalvanagh P, et al. Enhancement of Immune Responses by Co-delivery of CCL19/MIP-3beta Chemokine Plasmid With HCV Core DNA/Protein Immunization. Hepat Mon. 2014; 14(3)[DOI][PubMed]
  • 7. Memarnejadian A, Roohvand F, Arashkia A, Rafati S, Shokrgozar MA. Polytope DNA vaccine development against hepatitis C virus: a streamlined approach from in silico design to in vitro and primary in vivo analyses in BALB/c mice. Protein Pept Lett. 2009; 16(7): 842-50[PubMed]
  • 8. Arashkia A, Roohvand F, Memarnejadian A, Aghasadeghi MR, Rafati S. Construction of HCV-polytope vaccine candidates harbouring immune-enhancer sequences and primary evaluation of their immunogenicity in BALB/c mice. Virus Genes. 2010; 40(1): 44-52[DOI][PubMed]
  • 9. Memarnejadian A, Roohvand F. Fusion of HBsAg and prime/boosting augment Th1 and CTL responses to HCV polytope DNA vaccine. Cell Immunol. 2010; 261(2): 93-8[DOI][PubMed]
  • 10. Seme K, Poljak M, Babic DZ, Mocilnik T, Vince A. The role of core antigen detection in management of hepatitis C: a critical review. J Clin Virol. 2005; 32(2): 92-101[DOI][PubMed]
  • 11. Baghbani-arani F, Roohvand F, Aghasadeghi MR, Eidi A, Amini S, Motevalli F, et al. Expression and characterization of Escherichia coli derived hepatitis C virus ARFP/F protein. Mol Biol (Mosk). 2012; 46(2): 251-9[PubMed]
  • 12. Zhu W, Chang Y, Wu C, Han Q, Pei R, Lu M, et al. The wild-type hepatitis C virus core inhibits initiation of antigen-specific T- and B-cell immune responses in BALB/c mice. Clin Vaccine Immunol. 2010; 17(7): 1139-47[DOI][PubMed]
  • 13. Cerutti A, Maillard P, Minisini R, Vidalain PO, Roohvand F, Pecheur EI, et al. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein. PLoS One. 2011; 6(10)[DOI][PubMed]
  • 14. Mavromara P, Sall A, Kalinina O, Horm V, Budkowska A, H. C. V. Collaborative Team of the International Pasteur Network . The impact of HCV diversity on diagnosis tools for HCV infection. Med Mal Infect. 2005; 35 Suppl 2-4[PubMed]
  • 15. Roohvand F, Aghasadeghi MR, Sadat SM, Budkowska A, Khabiri AR. HCV core protein immunization with Montanide/CpG elicits strong Th1/Th2 and long-lived CTL responses. Biochem Biophys Res Commun. 2007; 354(3): 641-9[DOI][PubMed]
  • 16. Acosta-Rivero N, Duenas-Carrera S, Alvarez-Lajonchere L, Morales-Grillo J. HCV core protein-expressing DNA vaccine induces a strong class I-binding peptide DTH response in mice. Biochem Biophys Res Commun. 2004; 314(3): 781-6[PubMed]
  • 17. Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, et al. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. Hepat Mon. 2013; 13(10)[DOI][PubMed]
  • 18. Ohadi M, Rasouli R, Darzi-Eslam E, Jafari A, Ehsani P. Expression of Shigella flexneri ipaB Gene in Tobacco. Avicenna J Med Biotechnol. 2013; 5(2): 118-24[PubMed]
  • 19. Guan ZJ, Guo B, Huo YL, Guan ZP, Wei YH. Overview of expression of hepatitis B surface antigen in transgenic plants. Vaccine. 2010; 28(46): 7351-62[DOI][PubMed]
  • 20. Lai H, Chen Q. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Rep. 2012; 31(3): 573-84[DOI][PubMed]
  • 21. Nianiou I, Kalantidis K, Madesis P, Georgopoulou U, Mavromara P, Tsaftaris A. Expression of an HCV core antigen coding gene in tobacco (N. tabacum L.). Prep Biochem Biotechnol. 2008; 38(4): 411-21[DOI][PubMed]
  • 22. Madesis P, Osathanunkul M, Georgopoulou U, Gisby MF, Mudd EA, Nianiou I, et al. A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J Biotechnol. 2010; 145(4): 377-86[DOI][PubMed]
  • 23. Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, et al. Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol. 2008; 8: 53[DOI][PubMed]
  • 24. Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines. 2010; 9(8): 859-76[DOI][PubMed]
  • 25. Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A, Ugulava N, et al. A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses. 2008; 2(1): 33-40[DOI][PubMed]
  • 26. Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir Viruses. 2012; 6(3): 204-10[DOI][PubMed]
  • 27. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A. 1991; 88(8): 3324-8[PubMed]
  • 28. Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M. In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta. 2012; 236(4): 1305-13[DOI][PubMed]
  • 29. Gleba Y, Klimyuk V, Marillonnet S. Magnifection--a new platform for expressing recombinant vaccines in plants. Vaccine. 2005; 23(17-18): 2042-8[DOI][PubMed]
  • 30. Hefferon KL. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology. 2012; 433(1): 1-6[DOI][PubMed]
  • 31. Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv. 2011; 29(2): 210-22[DOI][PubMed]
  • 32. Lacorte C, Ribeiro SG, Lohuis D, Goldbach R, Prins M. Potatovirus X and Tobacco mosaic virus-based vectors compatible with the Gateway cloning system. J Virol Methods. 2010; 164(1-2): 7-13[DOI][PubMed]
  • 33. Maillard P, Lavergne JP, Siberil S, Faure G, Roohvand F, Petres S, et al. Fcgamma receptor-like activity of hepatitis C virus core protein. J Biol Chem. 2004; 279(4): 2430-7[DOI][PubMed]
  • 34. Roohvand F, Maillard P, Lavergne JP, Boulant S, Walic M, Andreo U, et al. Initiation of hepatitis C virus infection requires the dynamic microtubule network: role of the viral nucleocapsid protein. J Biol Chem. 2009; 284(20): 13778-91[DOI][PubMed]
  • 35. Sharp PM, Li WH. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987; 15(3): 1281-95[PubMed]
  • 36. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989; 108(2): 229-41[PubMed]
  • 37. Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987; 48(5): 899-907[PubMed]
  • 38. Chen PY, Wang C, Soong S, To K. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Molecular Breeding. 2003; 11(4): 287-93
  • 39. Sambrook J, Russell DW. Molecular cloning. 2001;
  • 40. Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988; 16(20): 9877[PubMed]
  • 41. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol. 2000; 42(6): 819-32[PubMed]
  • 42. Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003; 33(5): 949-56[PubMed]
  • 43. Kapila J, De Rycke R, Van Montagu M, Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci J. 1997; 122(1): 101-8[DOI]
  • 44. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54[PubMed]
  • 45. Sharma N, Kim T, Yang M. Production and secretion of human interleukin-18 in transgenic tobacco cell suspension culture. Biotech Bio Engin. 2006; 11(2): 154-9[DOI]
  • 46. Castilho A, Neumann L, Gattinger P, Strasser R, Vorauer-Uhl K, Sterovsky T, et al. Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS One. 2013; 8(1)[DOI][PubMed]
  • 47. Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact. 2008; 21(8): 1015-26[DOI][PubMed]
  • 48. Suo G, Chen B, Zhang J, Duan Z, He Z, Yao W, et al. Effects of codon modification on human BMP2 gene expression in tobacco plants. Plant Cell Rep. 2006; 25(7): 689-97[DOI][PubMed]
  • 49. Laguia-Becher M, Martin V, Kraemer M, Corigliano M, Yacono ML, Goldman A, et al. Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol. 2010; 10: 52[DOI][PubMed]
  • 50. Amani J, Mousavi SL, Rafati S, Salmanian AH. In silico analysis of chimeric espA, eae and tir fragments of Escherichia coli O157:H7 for oral immunogenic applications. Theor Biol Med Model. 2009; 6: 28[DOI][PubMed]
  • 51. Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Barañao L, et al. Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Molecul Breeding J. 2004; 13(1): 23-35[DOI]
  • 52. Brendel V, Kleffe J, Carle-Urioste JC, Walbot V. Prediction of splice sites in plant pre-mRNA from sequence properties. J Mol Biol. 1998; 276(1): 85-104[DOI][PubMed]
  • 53. Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, et al. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One. 2011; 6(3)[DOI][PubMed]
  • 54. Zheng N, Xia R, Yang C, Yin B, Li Y, Duan C, et al. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine. 2009; 27(36): 5001-7[DOI][PubMed]
  • 55. Komarova TV, Schwartz AM, Makarov AA, Dorokhov YL. A new viral vector exploiting RNA polymerase I-mediated transcription. Biochemistry (Mosc). 2012; 77(5): 532-8[DOI][PubMed]
  • 56. Sohi HH, Jourabchi E, Khodabandeh M. Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration. Iranian J Biotech. 2005; 3(2)
  • 57. Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol. 2011; 54(6): 1273-85[DOI][PubMed]
  • 58. Firbas C, Boehm T, Buerger V, Schuller E, Sabarth N, Jilma B, et al. Immunogenicity and safety of different injection routes and schedules of IC41, a Hepatitis C virus (HCV) peptide vaccine. Vaccine. 2010; 28(12): 2397-407[DOI][PubMed]
  • 59. Peach C, Velten J. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 1991; 17(1): 49-60[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments