Hepatitis Monthly

Published by: Kowsar

Optimization of Three Dimensional Culturing of the HepG2 Cell Line in Fibrin Scaffold

Mehrzad Banihashemi 1 , Milad Mohkam 1 , 2 , Azam Safari 1 , Navid Nezafat 1 , Manica Negahdaripour 1 , Fatemeh Mohammadi 1 , 2 , Sedigheh Kianpour 1 , 2 and Younes Ghasemi 1 , 2 , *
Authors Information
1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Hepatitis Monthly: March 01, 2015, 15 (3); e22731
  • Published Online: March 20, 2015
  • Article Type: Research Article
  • Received: August 13, 2014
  • Revised: November 12, 2014
  • Accepted: February 22, 2015
  • DOI: 10.5812/hepatmon.22731

To Cite: Banihashemi M, Mohkam M, Safari A, Nezafat N, Negahdaripour M, et al. Optimization of Three Dimensional Culturing of the HepG2 Cell Line in Fibrin Scaffold, Hepat Mon. 2015 ;15(3):e22731. doi: 10.5812/hepatmon.22731.

Abstract
Copyright © 2015, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Footnote
References
  • 1. Seliktar D. Extracellular stimulation in tissue engineering. Ann N Y Acad Sci. 2005; 1047: 386-94[DOI][PubMed]
  • 2. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002; 295(5557): 1009-14[DOI][PubMed]
  • 3. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005; 203(3): 465-70[DOI][PubMed]
  • 4. Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008; 14(2): 199-215[DOI][PubMed]
  • 5. Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, et al. Fibrin gel -- advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2001; 19(4): 424-30[PubMed]
  • 6. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005; 70: 247-99[DOI][PubMed]
  • 7. Clark RA. Fibrin is a many splendored thing. J Invest Dermatol. 2003; 121(5)[DOI][PubMed]
  • 8. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005; 23(1): 47-55[DOI][PubMed]
  • 9. Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 2006; 27(36): 5990-6003[DOI][PubMed]
  • 10. Cox S, Cole M, Tawil B. Behavior of human dermal fibroblasts in three-dimensional fibrin clots: dependence on fibrinogen and thrombin concentration. Tissue Eng. 2004; 10(5-6): 942-54[DOI][PubMed]
  • 11. Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003; 24(14): 2497-502[PubMed]
  • 12. Yao L, Swartz DD, Gugino SF, Russell JA, Andreadis ST. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng. 2005; 11(7-8): 991-1003[DOI][PubMed]
  • 13. Schense JC, Hubbell JA. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem. 2000; 275(10): 6813-8[PubMed]
  • 14. Herbert CB, Bittner GD, Hubbell JA. Effects of fibinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional fibrin gels. J Comp Neurol. 1996; 365(3): 380-91[PubMed]
  • 15. Tuan TL, Song A, Chang S, Younai S, Nimni ME. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp Cell Res. 1996; 223(1): 127-34[DOI][PubMed]
  • 16. Ghasemi Y, Mohkam M, Ghasemian A, Rasoul-Amini S. Experimental design of medium optimization for invertase production by Pichia sp. J Food Sci Technol. 2014; 51(2): 267-75[DOI][PubMed]
  • 17. Aghdai MH, Jamshidzadeh A, Nematizadeh M, Behzadiannia M, Niknahad H, Amirghofran Z, et al. Evaluating the Effects of Dithiothreitol and Fructose on Cell Viability and Function of Cryopreserved Primary Rat Hepatocytes and HepG2 Cell Line. Hepat Mon. 2013; 13(1)[DOI][PubMed]
  • 18. Wu M, Yang Z, Liu Y, Liu B, Zhao X. The 3-D Culture andIn VivoGrowth of the Human Hepatocellular Carcinoma Cell Line HepG2 in a Self-Assembling Peptide Nanofiber Scaffold. J Nanomater. 2010; 2010: 1-7[DOI]
  • 19. Navarro-Alvarez N, Soto-Gutierrez A, Rivas-Carrillo JD, Chen Y, Yamamoto T, Yuasa T, et al. Self-assembling peptide nanofiber as a novel culture system for isolated porcine hepatocytes. Cell Transplant. 2006; 15(10): 921-7[PubMed]
  • 20. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng Part A. 2008; 14(2): 227-36[DOI][PubMed]
  • 21. Gelain F, Lomander A, Vescovi AL, Zhang S. Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds. J Nanosci Nanotechnol. 2007; 7(2): 424-34[PubMed]
  • 22. Kim MS, Yeon JH, Park JK. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices. 2007; 9(1): 25-34[DOI][PubMed]
  • 23. Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007; 28(1): 55-65[DOI][PubMed]
  • 24. Ferry JD, Morrison PR. Preparation and Properties of Serum and Plasma Proteins. VIII. The Conversion of Human Fibrinogen to Fibrin under Various Conditions1,2. J Am Chem S. 1947; 69(2): 388-400[DOI]
  • 25. Ferry JD. Structure and Rheology of Fibrin Networks. Biological and Synthetic Polymer Networks. 1988; : 41-55[DOI]
  • 26. Sidelmann JJ, Gram J, Jespersen J, Kluft C. Fibrin clot formation and lysis: basic mechanisms. Semin Thromb Hemost. 2000; 26(6): 605-18[DOI][PubMed]
  • 27. Standeven KF, Ariens RA, Grant PJ. The molecular physiology and pathology of fibrin structure/function. Blood Rev. 2005; 19(5): 275-88[DOI][PubMed]
  • 28. Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem. 2004; 112(2-3): 267-76[DOI][PubMed]
  • 29. Moradpour Z, Ghasemian A, Safari A, Mohkam M, Ghasemi Y. Isolation, molecular identification and statistical optimization of culture condition for a new extracellular cholesterol oxidase-producing strain using response surface methodology. Ann Microbiol. 2013; 63(3): 941-50[DOI]
  • 30. Ferreira MS, Jahnen-Dechent W, Labude N, Bovi M, Hieronymus T, Zenke M, et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials. 2012; 33(29): 6987-97[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments