Hepatitis Monthly

Published by: Kowsar

Five Years Survival of Patients After Liver Transplantation and Its Effective Factors by Neural Network and Cox Poroportional Hazard Regression Models

Bahareh Khosravi 1 , Saeedeh Pourahmad 1 , 2 , * , Amin Bahreini 3 , Saman Nikeghbalian 4 and Goli Mehrdad 5
Authors Information
1 Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
3 Department of Organ Transplantation, Ahvaz University of Medical Sciences, Ahvaz, IR Iran
4 Department of Organ Transplantation, Shiraz University of Medical Sciences, Shiraz, IR Iran
5 Center of Namazee Hospital Organ Transplant, Shiraz, IR Iran
Article information
  • Hepatitis Monthly: September 01, 2015, 15 (9); e25164
  • Published Online: September 1, 2015
  • Article Type: Research Article
  • Received: March 3, 2015
  • Revised: May 23, 2015
  • Accepted: August 19, 2015
  • DOI: 10.5812/hepatmon.25164

To Cite: Khosravi B, Pourahmad S, Bahreini A, Nikeghbalian S, Mehrdad G. et al. Five Years Survival of Patients After Liver Transplantation and Its Effective Factors by Neural Network and Cox Poroportional Hazard Regression Models, Hepat Mon. 2015 ;15(9):e25164. doi: 10.5812/hepatmon.25164.

Abstract
Copyright © 2015, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Abramson O, Rosenthal P. Current status of pediatric liver transplantation. Clin Liver Dis. 2000; 4(3): 533-52[PubMed]
  • 2. Ghobrial RM, Farmer DG, Amersi F, Busuttil RW. Advances in pediatric liver and intestinal transplantation. Am J Surg. 2000; 180(5): 328-34[PubMed]
  • 3. Adam R, Cailliez V, Majno P, Karam V, McMaster P, Caine RY, et al. Normalised intrinsic mortality risk in liver transplantation: European Liver Transplant Registry study. Lancet. 2000; 356(9230): 621-7[PubMed]
  • 4. Hoofnagle JH, Lombardero M, Zetterman RK, Lake J, Porayko M, Everhart J, et al. Donor age and outcome of liver transplantation. Hepatology. 1996; 24(1): 89-96[DOI][PubMed]
  • 5. Sabet B, Rajaee-fard A, Nikeghbalian S, Malek-Hosseini SA. Six years liver transplants outcome in Shiraz transplant center. J of Isfahan Med School. 2009; 27(99): 543-50
  • 6. Marsh JW, Finkelstein SD, Demetris AJ, Swalsky PA, Sasatomi E, Bandos A, et al. Genotyping of hepatocellular carcinoma in liver transplant recipients adds predictive power for determining recurrence-free survival. Liver Transpl. 2003; 9(7): 664-71[DOI][PubMed]
  • 7. Hoot NR. Models to Predict Survival After Liver Transplantation. 2005;
  • 8. Piscaglia F, Cucchetti A, Benlloch S, Vivarelli M, Berenguer J, Bolondi L, et al. Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors. Eur J Gastroenterol Hepatol. 2006; 18(12): 1255-61[DOI][PubMed]
  • 9. Cruz-Ramírez M, Hervás-Martínez C, Gutiérrez PA, Pérez-Ortiz M, Briceño J, de la Mata M. Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Computing. 2012; 17(2): 275-84[DOI]
  • 10. Haseli N, Hassanzadeh J, Dehghani SM, Bahador A, Malek Hosseini SA. Long-term survival and its related factors in pediatric liver transplant recipients of shiraz transplant center, shiraz, iran in 2012. Hepat Mon. 2013; 13(7)[DOI][PubMed]
  • 11. Kleinbaum D, Klein M. Survival Analysis: A self-learning text, 2005. 2011;
  • 12. Chowdhury DR, Chatterjee M, Samanta RK. An artificial neural network model for neonatal disease diagnosis. Int J Artif Intelligence and Expert Syst . 2011; 2(3): 96-106
  • 13. Erguzel TT, Ozekes S, Tan O, Gultekin S. Feature Selection and Classification of Electroencephalographic Signals An Artificial Neural Network and Genetic Algorithm Based Approach. Clin EEG Neurosci. 2014; 14
  • 14. Punia R, Singh S. Review on Machine Learning Techniques for Automatic Segmentation of Liver Images. Int J Adv Res In Comput Sci Softw Eng. 2013; 3(4): 666-70
  • 15. Motalleb G. Artificial neural network analysis in preclinical breast cancer. Cell J. 2014; 15(4): 324-31[PubMed]
  • 16. Nakajima K, Matsuo S, Wakabayashi H, Yokoyama K, Bunko H, Okuda K, et al. Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging. Circ J. 2015; 79(7): 1549-56[DOI][PubMed]
  • 17. Gholipour C, Rahim F, Fakhree A, Ziapour B. Using an Artificial Neural Networks (ANNs) Model for Prediction of Intensive Care Unit (ICU) Outcome and Length of Stay at Hospital in Traumatic Patients. J Clin Diagn Res. 2015; 9(4)-23[DOI][PubMed]
  • 18. Mala K, Sadasivam V, Alagappan S. Neural network based texture analysis of CT images for fatty and cirrhosis liver classification. Appl Soft Comput. 2015; 32: 80-6[DOI]
  • 19. Hussain MA, Ansari TM, Gawas PS, Chowdhury NN. Lung Cancer Detection Using Artificial Neural Network & Fuzzy Clustering. Int J Adv Res In Comput Sci Softw Eng. 2015; 4(3): 360-3
  • 20. Pourahmad S, Azad M, Paydar S. Diagnosis of Malignancy in Thyroid Tumors by Multi-Layer Perceptron Neural Networks With Different Batch Learning Algorithms. Glob J Health Sci. 2015; 7(6): 43378[DOI][PubMed]
  • 21. Jones AS, Taktak AGF, Helliwell TR, Fenton JE, Birchall MA, Husband DJ, et al. An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma. Eur Arch Otorhinolaryngol. 2006; 263(6): 541-7[DOI]
  • 22. Continuous and Discrete Time Survival Analysis: Neural Network Approaches. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. : 5420-3
  • 23. Chi CL, Street WN, Wolberg WH. Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc. 2007; : 130-4[PubMed]
  • 24. Amiri Z, Mohammad K, Mahmoudi M, Zeraati H, Fotouhi A. Assessment of gastric cancer survival: using an artificial hierarchical neural network. Pak J Biol Sci. 2008; 11(8): 1076-84[PubMed]
  • 25. Biglarian A, Hajizadeh E, Kazemnejad A, Zali M. Application of artificial neural network in predicting the survival rate of gastric cancer patients. Iran J Public Health. 2011; 40(2): 80-6[PubMed]
  • 26. Ansari D, Nilsson J, Andersson R, Regner S, Tingstedt B, Andersson B. Artificial neural networks predict survival from pancreatic cancer after radical surgery. Am J Surg. 2013; 205(1): 1-7[DOI][PubMed]
  • 27. Sedehi M, Amani F, Momeni Dehaghi F. Analysis of survival data of patient with breast cancer using artificial neural network and cox regression models. J of Zabol Univ Of Med Sci and Health Serv. 2014; 5(4): 24-32
  • 28. Sharaf T, Tsokos CP. Two Artificial Neural Networks for Modeling Discrete Survival Time of Censored Data. Adv in Artificial Intel. 2015; 2015
  • 29. Cucchetti A, Piscaglia F, Grigioni AD, Ravaioli M, Cescon M, Zanello M, et al. Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: a pilot study. J Hepatol. 2010; 52(6): 880-8[DOI][PubMed]
  • 30. Ho WH, Lee KT, Chen HY, Ho TW, Chiu HC. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PLoS One. 2012; 7(1)[DOI][PubMed]
  • 31. Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008; 50(3): 419-30[DOI][PubMed]
  • 32. Zare A, Mahmoodi M, Mohammad K, Zeraati H, Hosseini M, Holakouie Naieni K. A comparison between Kaplan-Meier and weighted Kaplan-Meier methods of five-year survival estimation of patients with gastric cancer. Acta Med Iran. 2014; 52(10): 764-7[PubMed]
  • 33. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010; 1(4): 274-8[DOI][PubMed]
  • 34. Tome S, Wells JT, Said A, Lucey MR. Quality of life after liver transplantation. A systematic review. J Hepatol. 2008; 48(4): 567-77[DOI][PubMed]
  • 35. Biglarian A, Bakhshi E, Baghestani AR, Gohari MR, Rahgozar M, Karimloo M. Nonlinear survival regression using artificial neural network. J Probab Stat. 2013; 2013: 1-7
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments