Hepatitis Monthly

Published by: Kowsar

How Hepatitis C Virus Leads to Hepatocellular Carcinoma: A Network-Based Study

Vahdat Poortahmasebi 1 , Mansour Poorebrahim 2 , * , Saeideh Najafi 3 , Seyed Mohammad Jazayeri 1 , Seyed Moayed Alavian 4 , Seyed Shahriar Arab 5 , Saeid Ghavami 6 , Seyed Ehsan Alavian 4 , Adel Rezaei Moghadam 6 and Mehdi Amiri 7
Authors Information
1 Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, IR Iran
4 Middle East Liver Diseases (MELD) Center, Tehran, IR Iran
5 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
6 Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
7 Department of Cell Biology and Anatomy, Schulich School of Medicine and Dentistry, Western University, London, Canada
Article information
  • Hepatitis Monthly: February 2016, 16 (2); e36005
  • Published Online: February 20, 2016
  • Article Type: Research Article
  • Received: January 2, 2016
  • Accepted: January 20, 2016
  • DOI: 10.5812/hepatmon.36005

To Cite: Poortahmasebi V, Poorebrahim M, Najafi S, Jazayeri S M, Alavian S M, et al. How Hepatitis C Virus Leads to Hepatocellular Carcinoma: A Network-Based Study, Hepat Mon. 2016 ;16(2):e36005. doi: 10.5812/hepatmon.36005.

Abstract
Copyright: Copyright © 2016, Hepatitis Monthly. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited..
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med. 1999; 131(3): 174-81[PubMed]
  • 2. Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 2010; 7(8): 448-58[DOI][PubMed]
  • 3. Goossens N, Hoshida Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin Mol Hepatol. 2015; 21(2): 105-14[DOI][PubMed]
  • 4. Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS, et al. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. J Biol Chem. 1998; 273(28): 17651-9[PubMed]
  • 5. Kao CF, Chen SY, Chen JY, Wu Lee YH. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene. 2004; 23(14): 2472-83[DOI][PubMed]
  • 6. Otsuka M, Kato N, Lan K, Yoshida H, Kato J, Goto T, et al. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem. 2000; 275(44): 34122-30[DOI][PubMed]
  • 7. Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 2002; 122(2): 352-65[PubMed]
  • 8. Kwun HJ, Jung EY, Ahn JY, Lee MN, Jang KL. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol. 2001; 82: 2235-41[DOI][PubMed]
  • 9. Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002; 21(31): 4801-11[DOI][PubMed]
  • 10. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011; 71(5): 1871-82[DOI][PubMed]
  • 11. Arima N, Kao CY, Licht T, Padmanabhan R, Sasaguri Y, Padmanabhan R. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. J Biol Chem. 2001; 276(16): 12675-84[DOI][PubMed]
  • 12. Street A, Macdonald A, McCormick C, Harris M. Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular beta-catenin and stimulation of beta-catenin-responsive transcription. J Virol. 2005; 79(8): 5006-16[DOI][PubMed]
  • 13. Munakata T, Nakamura M, Liang Y, Li K, Lemon SM. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 2005; 102(50): 18159-64[DOI][PubMed]
  • 14. Koike K. Molecular Basis of Hepatitis C Virus–Associated Hepatocarcinogenesis: Lessons From Animal Model Studies. Clin Gastroenterol Hepatol. 2005; 3-5
  • 15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013; 41-5[DOI][PubMed]
  • 16. Lu M, Shi B, Wang J, Cao Q, Cui Q. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC Bioinformatics. 2010; 11: 419[DOI][PubMed]
  • 17. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013; 41-15[DOI][PubMed]
  • 18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-504[DOI][PubMed]
  • 19. Hsu S, Lin F, Wu W, Liang C, Huang W, Chan W, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic acids res. 2010;
  • 20. Neyshabur B, Khadem A, Hashemifar S, Arab SS. NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics. 2013; 29(13): 1654-62[DOI][PubMed]
  • 21. Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014; 61(1 Suppl)-90[DOI][PubMed]
  • 22. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002; 122(2): 366-75[PubMed]
  • 23. Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, et al. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol. 2002; 76(8): 4008-21[PubMed]
  • 24. Scholle F, Li K, Bodola F, Ikeda M, Luxon BA, Lemon SM. Virus-host cell interactions during hepatitis C virus RNA replication: impact of polyprotein expression on the cellular transcriptome and cell cycle association with viral RNA synthesis. J Virol. 2004; 78(3): 1513-24[PubMed]
  • 25. Schwer B, Ren S, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, et al. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol. 2004; 78(15): 7958-68[DOI][PubMed]
  • 26. Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008; 47(4): 1223-32[DOI][PubMed]
  • 27. Erhardt A, Hassan M, Heintges T, Haussinger D. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology. 2002; 292(2): 272-84[DOI][PubMed]
  • 28. Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006; 25(27): 3834-47[DOI][PubMed]
  • 29. Li Y, Zhang Q, Liu Y, Luo Z, Kang L, Qu J, et al. Hepatitis C virus activates Bcl-2 and MMP-2 expression through multiple cellular signaling pathways. J Virol. 2012; 86(23): 12531-43[DOI][PubMed]
  • 30. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003; 22(21): 3205-12[DOI][PubMed]
  • 31. Bahnassi AA, Zekri AR, El-Houssini S, Mokhtar NM, Abdel-Aziz AO, Sherif GM, et al. Hepatitis C virus-NS3P in relation to p53, p21waf, mdm2, p21-ras and c-erbB2 in hepatocarcinogenesis. J Gastroenterol Hepatol. 2005; 20(11): 1731-40[DOI][PubMed]
  • 32. Hassan M, Selimovic D, Ghozlan H, Abdel-kader O. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology. 2009; 49(5): 1469-82[DOI][PubMed]
  • 33. Lin ZY, Chuang WL. Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells. Biomed Pharmacother. 2012; 66(6): 454-8[DOI][PubMed]
  • 34. Nunez O, Fernandez-Martinez A, Majano PL, Apolinario A, Gomez-Gonzalo M, Benedicto I, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut. 2004; 53(11): 1665-72[DOI][PubMed]
  • 35. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 2011; 208(3): 549-60[DOI][PubMed]
  • 36. Zhang L, Zhou M, Qin G, Weintraub NL, Tang Y. MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochem Biophys Res Commun. 2014; 446(4): 952-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader