Hepatitis Monthly

Published by: Kowsar

How Hepatitis C Virus Leads to Hepatocellular Carcinoma: A Network-Based Study

Vahdat Poortahmasebi 1 , Mansour Poorebrahim 2 , * , Saeideh Najafi 3 , Seyed Mohammad Jazayeri 1 , Seyed Moayed Alavian 4 , Seyed Shahriar Arab 5 , Saeid Ghavami 6 , Seyed Ehsan Alavian 4 , Adel Rezaei Moghadam 6 and Mehdi Amiri 7
Authors Information
1 Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, IR Iran
4 Middle East Liver Diseases (MELD) Center, Tehran, IR Iran
5 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
6 Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
7 Department of Cell Biology and Anatomy, Schulich School of Medicine and Dentistry, Western University, London, Canada
Article information
  • Hepatitis Monthly: February 01, 2016, 16 (2); e36005
  • Published Online: February 20, 2016
  • Article Type: Research Article
  • Received: January 2, 2016
  • Accepted: January 20, 2016
  • DOI: 10.5812/hepatmon.36005

To Cite: Poortahmasebi V, Poorebrahim M, Najafi S, Jazayeri S M, Alavian S M, et al. How Hepatitis C Virus Leads to Hepatocellular Carcinoma: A Network-Based Study, Hepat Mon. 2016 ; 16(2):e36005. doi: 10.5812/hepatmon.36005.

Copyright © 2016, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med. 1999; 131(3): 174-81[PubMed]
  • 2. Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 2010; 7(8): 448-58[DOI][PubMed]
  • 3. Goossens N, Hoshida Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin Mol Hepatol. 2015; 21(2): 105-14[DOI][PubMed]
  • 4. Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS, et al. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. J Biol Chem. 1998; 273(28): 17651-9[PubMed]
  • 5. Kao CF, Chen SY, Chen JY, Wu Lee YH. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene. 2004; 23(14): 2472-83[DOI][PubMed]
  • 6. Otsuka M, Kato N, Lan K, Yoshida H, Kato J, Goto T, et al. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem. 2000; 275(44): 34122-30[DOI][PubMed]
  • 7. Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 2002; 122(2): 352-65[PubMed]
  • 8. Kwun HJ, Jung EY, Ahn JY, Lee MN, Jang KL. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol. 2001; 82: 2235-41[DOI][PubMed]
  • 9. Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002; 21(31): 4801-11[DOI][PubMed]
  • 10. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011; 71(5): 1871-82[DOI][PubMed]
  • 11. Arima N, Kao CY, Licht T, Padmanabhan R, Sasaguri Y, Padmanabhan R. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. J Biol Chem. 2001; 276(16): 12675-84[DOI][PubMed]
  • 12. Street A, Macdonald A, McCormick C, Harris M. Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular beta-catenin and stimulation of beta-catenin-responsive transcription. J Virol. 2005; 79(8): 5006-16[DOI][PubMed]
  • 13. Munakata T, Nakamura M, Liang Y, Li K, Lemon SM. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 2005; 102(50): 18159-64[DOI][PubMed]
  • 14. Koike K. Molecular Basis of Hepatitis C Virus–Associated Hepatocarcinogenesis: Lessons From Animal Model Studies. Clin Gastroenterol Hepatol. 2005; 3-5
  • 15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013; 41-5[DOI][PubMed]
  • 16. Lu M, Shi B, Wang J, Cao Q, Cui Q. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC Bioinformatics. 2010; 11: 419[DOI][PubMed]
  • 17. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013; 41-15[DOI][PubMed]
  • 18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-504[DOI][PubMed]
  • 19. Hsu S, Lin F, Wu W, Liang C, Huang W, Chan W, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic acids res. 2010;
  • 20. Neyshabur B, Khadem A, Hashemifar S, Arab SS. NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics. 2013; 29(13): 1654-62[DOI][PubMed]
  • 21. Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014; 61(1 Suppl)-90[DOI][PubMed]
  • 22. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002; 122(2): 366-75[PubMed]
  • 23. Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, et al. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol. 2002; 76(8): 4008-21[PubMed]
  • 24. Scholle F, Li K, Bodola F, Ikeda M, Luxon BA, Lemon SM. Virus-host cell interactions during hepatitis C virus RNA replication: impact of polyprotein expression on the cellular transcriptome and cell cycle association with viral RNA synthesis. J Virol. 2004; 78(3): 1513-24[PubMed]
  • 25. Schwer B, Ren S, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, et al. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol. 2004; 78(15): 7958-68[DOI][PubMed]
  • 26. Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008; 47(4): 1223-32[DOI][PubMed]
  • 27. Erhardt A, Hassan M, Heintges T, Haussinger D. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology. 2002; 292(2): 272-84[DOI][PubMed]
  • 28. Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006; 25(27): 3834-47[DOI][PubMed]
  • 29. Li Y, Zhang Q, Liu Y, Luo Z, Kang L, Qu J, et al. Hepatitis C virus activates Bcl-2 and MMP-2 expression through multiple cellular signaling pathways. J Virol. 2012; 86(23): 12531-43[DOI][PubMed]
  • 30. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003; 22(21): 3205-12[DOI][PubMed]
  • 31. Bahnassi AA, Zekri AR, El-Houssini S, Mokhtar NM, Abdel-Aziz AO, Sherif GM, et al. Hepatitis C virus-NS3P in relation to p53, p21waf, mdm2, p21-ras and c-erbB2 in hepatocarcinogenesis. J Gastroenterol Hepatol. 2005; 20(11): 1731-40[DOI][PubMed]
  • 32. Hassan M, Selimovic D, Ghozlan H, Abdel-kader O. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology. 2009; 49(5): 1469-82[DOI][PubMed]
  • 33. Lin ZY, Chuang WL. Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells. Biomed Pharmacother. 2012; 66(6): 454-8[DOI][PubMed]
  • 34. Nunez O, Fernandez-Martinez A, Majano PL, Apolinario A, Gomez-Gonzalo M, Benedicto I, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut. 2004; 53(11): 1665-72[DOI][PubMed]
  • 35. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 2011; 208(3): 549-60[DOI][PubMed]
  • 36. Zhang L, Zhou M, Qin G, Weintraub NL, Tang Y. MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochem Biophys Res Commun. 2014; 446(4): 952-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments