Hepatitis Monthly

Published by: Kowsar

Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis

Reza Rezaee 1 , Mansour Poorebrahim 2 , Saeideh Najafi 3 , Solmaz Sadeghi 2 , Alieh Pourdast 4 , Seyed Moayed Alavian 5 , 6 , Seyed Ehsan Alavian 5 , 6 and Vahdat Poortahmasebi 7 , *
Authors Information
1 Ministry of Health and Medical Education, Deputy of Curative Affairs, Budget Administration, Tehran, IR Iran
2 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Microbiology, Tonekabon branch, Islamic Azad University, Tonekabon, Mazandaran, IR Iran
4 Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, IR Iran
5 Middle East Liver Diseases (MELD) Center, Tehran, IR Iran
6 Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
7 Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Hepatitis Monthly: July 01, 2016, 16 (7); e39097
  • Published Online: June 28, 2016
  • Article Type: Research Article
  • Received: May 10, 2016
  • Revised: May 17, 2016
  • Accepted: June 11, 2016
  • DOI: 10.5812/hepatmon.39097

To Cite: Rezaee R, Poorebrahim M, Najafi S, Sadeghi S, Pourdast A, et al. Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis, Hepat Mon. 2016 ; 16(7):e39097. doi: 10.5812/hepatmon.39097.

Copyright © 2016, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature. 1985; 317(6037): 489-95[PubMed]
  • 2. Chen P, Gan Y, Han N, Fang W, Li J, Zhao F, et al. Computational evolutionary analysis of the overlapped surface (S) and polymerase (P) region in hepatitis B virus indicates the spacer domain in P is crucial for survival. PLoS One. 2013; 8(4): 60098[DOI][PubMed]
  • 3. Ashton-Rickardt PG, Murray K. Mutations that change the immunological subtype of hepatitis B virus surface antigen and distinguish between antigenic and immunogenic determination. J Med Virol. 1989; 29(3): 204-14[PubMed]
  • 4. Alavian SM, Carman WF, Jazayeri SM. HBsAg variants: diagnostic-escape and diagnostic dilemma. J Clin Virol. 2013; 57(3): 201-8[DOI][PubMed]
  • 5. Weber B. Diagnostic impact of the genetic variability of the hepatitis B virus surface antigen gene. J Med Virol. 2006; 78 Suppl 1-65[DOI][PubMed]
  • 6. Weber B, Melchior W, Gehrke R, Doerr HW, Berger A, Rabenau H. Hepatitis B virus markers in anti-HBc only positive individuals. J Med Virol. 2001; 64(3): 312-9[PubMed]
  • 7. El Chaar M, Candotti D, Crowther RA, Allain JP. Impact of hepatitis B virus surface protein mutations on the diagnosis of occult hepatitis B virus infection. Hepatology. 2010; 52(5): 1600-10[DOI][PubMed]
  • 8. Besharat S, Katoonizadeh A, Moradi A. Potential mutations associated with occult hepatitis B virus status. Hepat Mon. 2014; 14(5): 15275[DOI][PubMed]
  • 9. Shahmoradi S, Yahyapour Y, Mahmoodi M, Alavian SM, Fazeli Z, Jazayeri SM. High prevalence of occult hepatitis B virus infection in children born to HBsAg-positive mothers despite prophylaxis with hepatitis B vaccination and HBIG. J Hepatol. 2012; 57(3): 515-21[DOI][PubMed]
  • 10. Purdy MA. Hepatitis B virus S gene escape mutants. Asian J Transfus Sci. 2007; 1(2): 62-70[DOI][PubMed]
  • 11. Bock CT, Tillmann HL, Torresi J, Klempnauer J, Locarnini S, Manns MP, et al. Selection of hepatitis B virus polymerase mutants with enhanced replication by lamivudine treatment after liver transplantation. Gastroenterology. 2002; 122(2): 264-73[PubMed]
  • 12. Norouzi M, Ramezani F, Khedive A, Karimzadeh H, Alavian SM, Malekzadeh R, et al. Hepatitis B Virus Genotype D is the Only Genotype Circulating in Iranian Chronic Carriers, the Unique Pattern of Genotypic Homogeneity. J Gastroenterol Hepatol Res. 2014; 3(9): 1238-43[DOI]
  • 13. Ma Q, Wang Y. Comprehensive analysis of the prevalence of hepatitis B virus escape mutations in the major hydrophilic region of surface antigen. J Med Virol. 2012; 84(2): 198-206[DOI][PubMed]
  • 14. Ireland JH, O'Donnell B, Basuni AA, Kean JD, Wallace LA, Lau GK, et al. Reactivity of 13 in vitro expressed hepatitis B surface antigen variants in 7 commercial diagnostic assays. Hepatology. 2000; 31(5): 1176-82[DOI][PubMed]
  • 15. Folgori A, Tafi R, Meola A, Felici F, Galfre G, Cortese R, et al. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 1994; 13(9): 2236-43[PubMed]
  • 16. Motti C, Nuzzo M, Meola A, Galfre G, Felici F, Cortese R, et al. Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene. 1994; 146(2): 191-8[PubMed]
  • 17. Chen YC, Delbrook K, Dealwis C, Mimms L, Mushahwar IK, Mandecki W. Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous phage peptide library. Proc Natl Acad Sci U S A. 1996; 93(5): 1997-2001[PubMed]
  • 18. Stirk HJ, Thornton JM, Howard CR. A topological model for hepatitis B surface antigen. Intervirology. 1992; 33(3): 148-58[PubMed]
  • 19. Westbrook J, Feng Z, Chen L, Yang H, Berman HM. The Protein Data Bank and structural genomics. Nucleic Acids Res. 2003; 31(1): 489-91[PubMed]
  • 20. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015; 43-94[DOI][PubMed]
  • 21. Rost B, Sander C, Schneider R. PHD-an automatic mail server for protein secondary structure prediction. Bioinformatics. 1994; 10(1): 53-60[DOI]
  • 22. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000; 16(4): 404-5[PubMed]
  • 23. Jones DT, Taylor WR, Thornton JM. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994; 33(10): 3038-49[PubMed]
  • 24. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6): 845-58[DOI][PubMed]
  • 25. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011; 101(10): 2525-34[DOI][PubMed]
  • 26. DeLano WL. The PyMOL molecular graphics system. 2002;
  • 27. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, et al. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003; 31(13): 3316-9[PubMed]
  • 28. Maiti R, Van Domselaar GH, Zhang H, Wishart DS. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 2004; 32: 590-4[DOI][PubMed]
  • 29. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005; 33(7): 2302-9[DOI][PubMed]
  • 30. Appel JR, Muller S, Benkirane N, Houghten RA, Pinilla C. Highly specific, cross-reactive sequences recognized by an anti-HBsAg antibody identified from a positional scanning synthetic combinatorial library. Pept Res. 1996; 9(4): 174-82[PubMed]
  • 31. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004; 20(1): 45-50[PubMed]
  • 32. Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, Beglov D, et al. Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics. 2012; 28(20): 2608-14[DOI][PubMed]
  • 33. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol. 2009; 19(2): 120-7[DOI][PubMed]
  • 34. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013; 29(7): 845-54[DOI][PubMed]
  • 35. Dindoost P, Jazayeri SM, Karimzadeh H, Saberfar E, Miri SM, Alavian SM. HBsAg Variants: Common Escape Issues. Jundishapur J Microb. 2012; 5(4): 521-7[DOI]
  • 36. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008; 36: 513-8[DOI][PubMed]
  • 37. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007; 35: 407-10[DOI][PubMed]
  • 38. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011; 51(10): 2778-86[DOI][PubMed]
  • 39. Lobanov M, Bogatyreva NS, Galzitskaia OV. Radius of gyration is indicator of Radius of protein structure compactness. Mol Biol. 2008; 42(4): 701-6[PubMed]
  • 40. Sheldon J, Soriano V. Hepatitis B virus escape mutants induced by antiviral therapy. J Antimicrob Chemother. 2008; 61(4): 766-8[DOI][PubMed]
  • 41. Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antivir Ther. 2010; 15(3 Pt B): 451-61[DOI][PubMed]
  • 42. Ishigami M, Honda T, Ishizu Y, Onishi Y, Kamei H, Hayashi K, et al. Frequent incidence of escape mutants after successful hepatitis B vaccine response and stopping of nucleos(t)ide analogues in liver transplant recipients. Liver Transpl. 2014; 20(10): 1211-20[DOI][PubMed]
  • 43. Ponsel D, Bruss V. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J Virol. 2003; 77(1): 416-22[PubMed]
  • 44. Carrotta R, Bauer R, Waninge R, Rischel C. Conformational characterization of oligomeric intermediates and aggregates in beta-lactoglobulin heat aggregation. Protein Sci. 2001; 10(7): 1312-8[DOI][PubMed]
  • 45. Gomez-Gutierrez J, Rodriguez-Crespo I, Gonzalez-Ros JM, Ferragut JA, Paul DA, Peterson DL, et al. Thermal stability of hepatitis B surface antigen S proteins. Biochim Biophys Acta. 1992; 1119(3): 225-31[PubMed]
  • 46. Chen J, Lu Z, Sakon J, Stites WE. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. J Mol Biol. 2000; 303(2): 125-30[DOI][PubMed]
  • 47. Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN. 2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure. 1995; 3(12): 1295-306[PubMed]
  • 48. Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol. 1994; 235(2): 625-34[DOI][PubMed]
  • 49. Tsai CJ, Nussinov R. Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association. Protein Sci. 1997; 6(7): 1426-37[DOI][PubMed]
  • 50. Benson NC, Daggett V. Dynameomics: large-scale assessment of native protein flexibility. Protein Sci. 2008; 17(12): 2038-50[DOI][PubMed]
  • 51. Yu DM, Li XH, Mom V, Lu ZH, Liao XW, Han Y, et al. N-glycosylation mutations within hepatitis B virus surface major hydrophilic region contribute mostly to immune escape. J Hepatol. 2014; 60(3): 515-22[DOI][PubMed]
  • 52. Chiou HL, Lee TS, Kuo J, Mau YC, Ho MS. Altered antigenicity of 'a' determinant variants of hepatitis B virus. J Gen Virol. 1997; 78 ( Pt 10): 2639-45[DOI][PubMed]
  • 53. Cooreman MP, van Roosmalen MH, te Morsche R, Sunnen CM, de Ven EM, Jansen JB, et al. Characterization of the reactivity pattern of murine monoclonal antibodies against wild-type hepatitis B surface antigen to G145R and other naturally occurring "a" loop escape mutations. Hepatology. 1999; 30(5): 1287-92[DOI][PubMed]
  • 54. Zheng X, Weinberger KM, Gehrke R, Isogawa M, Hilken G, Kemper T, et al. Mutant hepatitis B virus surface antigens (HBsAg) are immunogenic but may have a changed specificity. Virology. 2004; 329(2): 454-64[DOI][PubMed]
  • 55. Hou J, Wang Z, Cheng J, Lin Y, Lau GK, Sun J, et al. Prevalence of naturally occurring surface gene variants of hepatitis B virus in nonimmunized surface antigen-negative Chinese carriers. Hepatology. 2001; 34(5): 1027-34[DOI][PubMed]
  • 56. Lehninger AL, Nelson DL, Cox MM. Amino Acids and Peptides. In: Lehninger principles of biochemistry. 1993; : 111-33
  • 57. Zhang M, Ge G, Yang Y, Cai X, Fu Q, Cai J, et al. Decreased antigenicity profiles of immune-escaped and drug-resistant hepatitis B surface antigen (HBsAg) double mutants. Virol J. 2013; 10: 292[DOI][PubMed]
  • 58. Zuckerman JN, Zuckerman AJ. Mutations of the surface protein of hepatitis B virus. Antiviral Res. 2003; 60(2): 75-8[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments