Hepatitis Monthly

Published by: Kowsar

A Neural Network Approach to Predict Acute Allograft Rejection in Liver Transplant Recipients Using Routine Laboratory Data

Abdolhossein Zare 1 , Mohammad Amin Zare 2 , Neda Zarei 1 , Ramin Yaghoobi 1 , Mohammad Ali Zare 1 , Saeede Salehi 3 , Bita Geramizadeh 1 , Seid Ali Malekhosseini 1 and Negar Azarpira 1 , 4 , *
Authors Information
1 Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 School of Electrical and Computer Engineering, Shiraz University, Shiraz, IR Iran
3 Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
4 Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz, IR Iran
Article information
  • Hepatitis Monthly: December 2017, 17 (12); e55092
  • Published Online: November 15, 2017
  • Article Type: Research Article
  • Received: June 16, 2017
  • Revised: September 15, 2017
  • Accepted: October 18, 2017
  • DOI: 10.5812/hepatmon.55092

To Cite: Zare A, Zare M A, Zarei N, Yaghoobi R, Zare M A, et al. A Neural Network Approach to Predict Acute Allograft Rejection in Liver Transplant Recipients Using Routine Laboratory Data, Hepat Mon. 2017 ;17(12):e55092. doi: 10.5812/hepatmon.55092.

Abstract
Copyright: Copyright © 2017, Hepatitis Monthly. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited..
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Zare A, Karimi MH, Rashki A, Geramizadeh B, Afshari A, Miri HR, et al. Association of the Interleukin-27 Gene Expression and Hepatitis B Virus Infection in Liver Transplanted Patients. Exp Clin Transplant. 2017;15(5):554-60. doi: 10.6002/ect.2015.0243. [PubMed: 26925776].
  • 2. Marzano A. Management of HBV resistance in the post-transplant setting. Digest Liver Dis Suppl. 2011;5(1):19-22. doi: 10.1016/s1594-5804(11)60020-x.
  • 3. Wu CF, Wu YJ, Liang PC, Wu CH, Peng SF, Chiu HW. Disease-free survival assessment by artificial neural networks for hepatocellular carcinoma patients after radiofrequency ablation. J Formos Med Assoc. 2017;116(10):765-73. doi: 10.1016/j.jfma.2016.12.006. [PubMed: 28117199].
  • 4. Khosravi B, Pourahmad S, Bahreini A, Nikeghbalian S, Mehrdad G. Five Years Survival of Patients After Liver Transplantation and Its Effective Factors by Neural Network and Cox Poroportional Hazard Regression Models. Hepat Mon. 2015;15(9). e25164. doi: 10.5812/hepatmon.25164. [PubMed: 26500682].
  • 5. Wiesner RH, Menon KV. Late hepatic allograft dysfunction. Liver Transpl. 2001;7(11 Suppl 1):S60-73. doi: 10.1053/jlts.2001.29094. [PubMed: 11689778].
  • 6. Rodriguez-Peralvarez M, Rico-Juri JM, Tsochatzis E, Burra P, De la Mata M, Lerut J. Biopsy-proven acute cellular rejection as an efficacy endpoint of randomized trials in liver transplantation: a systematic review and critical appraisal. Transpl Int. 2016;29(9):961-73. doi: 10.1111/tri.12737. [PubMed: 26714264].
  • 7. Bolognesi M, Sacerdoti D, Mescoli C, Nava V, Bombonato G, Merkel C, et al. Acute liver rejection: accuracy and predictive values of doppler US measurements--initial experience. Radiology. 2005;235(2):651-8. doi: 10.1148/radiol.2352040506. [PubMed: 15770040].
  • 8. Batts KP. Acute and chronic hepatic allograft rejection: pathology and classification. Liver Transplant. 1999;5(4 Suppl 1):S21-9.
  • 9. Hughes V. Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients. Liver Transplant. 2001;7(6):496-503. doi: 10.1053/jlts.2001.24642.
  • 10. Wang D, Wang Q, Shan F, Liu B, Lu C. Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers. BMC Infect Dis. 2010;10:251. doi: 10.1186/1471-2334-10-251. [PubMed: 20735842].
  • 11. Raoufy MR, Vahdani P, Alavian SM, Fekri S, Eftekhari P, Gharibzadeh S. A novel method for diagnosing cirrhosis in patients with chronic hepatitis B: artificial neural network approach. J Med Syst. 2011;35(1):121-6. doi: 10.1007/s10916-009-9348-8. [PubMed: 20703578].
  • 12. Piscaglia F, Cucchetti A, Benlloch S, Vivarelli M, Berenguer J, Bolondi L, et al. Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors. Eur J Gastroenterol Hepatol. 2006;18(12):1255-61. doi: 10.1097/01.meg.0000243885.55562.7e. [PubMed: 17099373].
  • 13. Shaikhina T, Khovanova NA. Handling limited datasets with neural networks in medical applications: A small-data approach. Artif Intell Med. 2017;75:51-63. doi: 10.1016/j.artmed.2016.12.003. [PubMed: 28363456].
  • 14. Desai KM, Vaidya BK, Singhal RS, Bhagwat SS. Use of an artificial neural network in modeling yeast biomass and yield of β-glucan. Proc Biochem. 2005;40(5):1617-26. doi: 10.1016/j.procbio.2004.06.015.
  • 15. Cucchetti A, Vivarelli M, Heaton ND, Phillips S, Piscaglia F, Bolondi L, et al. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Gut. 2007;56(2):253-8. doi: 10.1136/gut.2005.084434. [PubMed: 16809421].
  • 16. Dorado-Moreno M, Perez-Ortiz M, Gutierrez PA, Ciria R, Briceno J, Hervas-Martinez C. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med. 2017;77:1-11. doi: 10.1016/j.artmed.2017.02.004. [PubMed: 28545607].
  • 17. Heckerling PS, Canaris GJ, Flach SD, Tape TG, Wigton RS, Gerber BS. Predictors of urinary tract infection based on artificial neural networks and genetic algorithms. Int J Med Inform. 2007;76(4):289-96. doi: 10.1016/j.ijmedinf.2006.01.005. [PubMed: 16469531].
  • 18. Bottaci L, Drew PJ, Hartley JE, Hadfield MB, Farouk R, Lee PW, et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet. 1997;350(9076):469-72. doi: 10.1016/S0140-6736(96)11196-X. [PubMed: 9274582].
  • 19. Trtica-Majnaric L, Zekic-Susac M, Sarlija N, Vitale B. Prediction of influenza vaccination outcome by neural networks and logistic regression. J Biomed Inform. 2010;43(5):774-81. doi: 10.1016/j.jbi.2010.04.011. [PubMed: 20451660].
  • 20. Myers J, de Souza CR, Borghi-Silva A, Guazzi M, Chase P, Bensimhon D, et al. A neural network approach to predicting outcomes in heart failure using cardiopulmonary exercise testing. Int J Cardiol. 2014;171(2):265-9. doi: 10.1016/j.ijcard.2013.12.031. [PubMed: 24387896].
  • 21. Doyle HR, Dvorchik I, Mitchell S, Marino IR, Ebert FH, McMichael J, et al. Predicting outcomes after liver transplantation. A connectionist approach. Ann Surg. 1994;219(4):408-15. [PubMed: 8161267].
  • 22. Matis S, Doyle H, Marino I, Mural R, Uberbacher E. Use of neural networks for prediction of graft failure following liver transplantation. Proceedings of the Eighth IEEE Symposium on; IEEE. 1995. p. 133-40.
  • 23. Wight DGD, Portmann B. Pathology of liver transplantation. System Pathol. 1987;11:543-96.
  • 24. Raji CG, Vinod Chandra SS. Graft survival prediction in liver transplantation using artificial neural network models. J Comput Sci. 2016;16:72-8. doi: 10.1016/j.jocs.2016.05.005.
  • 25. Azar AT. Fast neural network learning algorithms for medical applications. Neur Comput Appl. 2012;23(3-4):1019-34. doi: 10.1007/s00521-012-1026-y.
  • 26. Hanley JA. Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging. 1989;29(3):307-35. [PubMed: 2667567].
  • 27. Banerjee R, Das A, Ghoshal UC, Sinha M. Predicting mortality in patients with cirrhosis of liver with application of neural network technology. J Gastroenterol Hepatol. 2003;18(9):1054-60. [PubMed: 12911662].
  • 28. Jiang W, Farber JL. Pathology of Liver Transplantation 21. Contemporary Liver Transplantation. 2017.
  • 29. Pedersen SM, Jorgensen JS, Pedersen JB. Use of neural networks to diagnose acute myocardial infarction. II. A clinical application. Clin Chem. 1996;42(4):613-7. [PubMed: 8605680].
  • 30. Sharpe PK, Solberg HE, Rootwelt K, Yearworth M. Artificial neural networks in diagnosis of thyroid function from in vitro laboratory tests. Clin Chem. 1993;39(11 Pt 1):2248-53. [PubMed: 8222217].
  • 31. Kuo RJ, Huang MH, Cheng WC, Lin CC, Wu YH. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system. Artif Intell Med. 2015;63(2):119-33. doi: 10.1016/j.artmed.2014.12.008. [PubMed: 25576196].
  • 32. Brier ME, Ray PC, Klein JB. Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant. 2003;18(12):2655-9. [PubMed: 14605292].
  • 33. Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras E, et al. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp Hematol. 2010;38(5):426-33. doi: 10.1016/j.exphem.2010.02.012. [PubMed: 20206661].
  • 34. Sheppard D, McPhee D, Darke C, Shrethra B, Moore R, Jurewitz A, et al. Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach. Int J Med Inform. 1999;54(1):55-76. [PubMed: 10206429].
  • 35. Cruz-Ramirez M, Hervas-Martinez C, Fernandez JC, Briceno J, de la Mata M. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. Artif Intell Med. 2013;58(1):37-49. doi: 10.1016/j.artmed.2013.02.004. [PubMed: 23489761].
  • 36. Ibanez V, Pareja E, Serrano AJ, Vila JJ, Perez S, Martin JD, et al. Predicting Early Transplant Failure: Neural Network Versus Logistic Regression Models. Open Transplant J. 2009;3(1):14-21. doi: 10.2174/1874418400903010014.
  • 37. Tangri N, Ansell D, Naimark D. Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression. Nephrol Dial Transplant. 2008;23(9):2972-81. doi: 10.1093/ndt/gfn187. [PubMed: 18441002].
  • 38. Green M, Bjork J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med. 2006;38(3):305-18. doi: 10.1016/j.artmed.2006.07.006. [PubMed: 16962295].
  • 39. Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak. 2005;5:3. doi: 10.1186/1472-6947-5-3. [PubMed: 15713231].
  • 40. Chiu HC, Ho TW, Lee KT, Chen HY, Ho WH. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network. ScientificWorldJournal. 2013;2013:201976. doi: 10.1155/2013/201976. [PubMed: 23737707].
  • 41. Moon DB, Lee SG, Kang WH, Song GW, Jung DH, Park GC, et al. Adult Living Donor Liver Transplantation for Acute-on-Chronic Liver Failure in High-Model for End-Stage Liver Disease Score Patients. Am J Transplant. 2017;17(7):1833-42. doi: 10.1111/ajt.14198. [PubMed: 28097804].
  • 42. Rajanayagam J, Frank E, Shepherd RW, Lewindon PJ. Artificial neural network is highly predictive of outcome in paediatric acute liver failure. Pediatr Transplant. 2013;17(6):535-42. doi: 10.1111/petr.12100. [PubMed: 23802584].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader