Hepatitis Monthly

Published by: Kowsar

Fabrication and Characterization of Heparin/Collagen Sponge for in Vitro Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells into Hepatocytes

Fatemeh Aleahmad 1 , Tahereh Talaei-Khozani 2 , Sareh Rajabi-Zeleti 3 , Mahsa Sani 2 , Sasan Jalili-Firoozinezhad 3 , 4 , Shahin Bonakdar 5 , Sanaz Heshmat-Azad 6 , Mahnaz Azarnia 1 , * and Mansoureh Jaberipour 7
Authors Information
1 Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IR Iran
2 Tissue Engineering Lab, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
3 Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR Iran
4 Departments of Biomedicine and Surgery, University Hospital Basel, University of Basel, Hebelstrasse, Basel, Switzerland
5 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, IR Iran
6 Department of Chemistry, Isfahan University of Technology, Isfahan, IR Iran
7 Institute of Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Hepatitis Monthly: 17 (2); e58724
  • Published Online: January 11, 2017
  • Article Type: Research Article
  • Received: July 12, 2016
  • Revised: October 16, 2016
  • Accepted: January 1, 2017
  • DOI: 10.5812/hepatmon.40599

To Cite: Aleahmad F, Talaei-Khozani T, Rajabi-Zeleti S, Sani M, Jalili-Firoozinezhad S, et al. Fabrication and Characterization of Heparin/Collagen Sponge for in Vitro Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells into Hepatocytes, Hepat Mon. Online ahead of Print ; 17(2):e58724. doi: 10.5812/hepatmon.40599.

Copyright © 2017, Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Global Burden of Disease and Risk Factors. 2006; [PubMed]
  • 2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11): 442[DOI][PubMed]
  • 3. Ige OO, Umoru LE, Aribo S. Natural products: A minefield of biomaterials. ISRN Materials Sci. 2012;
  • 4. Michalopoulos GK, Bowen WC, Zajac VF, Beer-Stolz D, Watkins S, Kostrubsky V, et al. Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology. 1999; 29(1): 90-100[DOI][PubMed]
  • 5. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989; 3(2): 174-7[PubMed]
  • 6. Oe S, Fukunaka Y, Hirose T, Yamaoka Y, Tabata Y. A trial on regeneration therapy of rat liver cirrhosis by controlled release of hepatocyte growth factor. J Control Release. 2003; 88(2): 193-200[PubMed]
  • 7. Bissell DM, Guzelian PS. Phenotypic stability of adult rat hepatocytes in primary monolayer culture*. Annals New York Academy Sci. 1980; 349(1): 85-98[DOI]
  • 8. Vanhaecke T, Rogiers V. Hepatocyte cultures in drug metabolism and toxicological research and testing. Methods Mol Biol. 2006; 320: 209-27[DOI][PubMed]
  • 9. McCarty WJ, Usta OB, Luitje M, Bale SS, Bhushan A, Hegde M, et al. A novel ultrathin collagen nanolayer assembly for 3-D microtissue engineering: Layer-by-layer collagen deposition for long-term stable microfluidic hepatocyte culture. Technology (Singap World Sci). 2014; 2(1): 67-74[DOI][PubMed]
  • 10. Nishida Y, Taniguchi A. A three-dimensional collagen-sponge-based culture system coated with simplified recombinant fibronectin improves the function of a hepatocyte cell line. In Vitro Cellular & Developmental Biology-Animal. 2015; : 1-7
  • 11. Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, et al. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules. 2014; 15(1): 206-18[DOI][PubMed]
  • 12. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006; 50(7): 645-52[DOI][PubMed]
  • 13. Vasavada VA, Praveen MR, Shah SK, Trivedi RH, Vasavada AR. Anti-inflammatory effect of low-molecular-weight heparin in pediatric cataract surgery: a randomized clinical trial. American J Ophthalmol. 2012; 154(2): 252-8
  • 14. Sommer A, Rifkin DB. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol. 1989; 138(1): 215-20[DOI][PubMed]
  • 15. Lyon M, Deakin JA, Rahmoune H, Fernig DG, Nakamura T, Gallagher JT. Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate. J Biol Chem. 1998; 273(1): 271-8[PubMed]
  • 16. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 2010; 31(13): 3596-603[DOI][PubMed]
  • 17. You J, Raghunathan VK, Son KJ, Patel D, Haque A, Murphy CJ, et al. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes. ACS Appl Mater Interfaces. 2015; 7(23): 12299-308[DOI][PubMed]
  • 18. Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Jaberipour M, Hosseini A, Bahmanpour S. Comparison of the Expression of Hepatic Genes by Human Wharton's Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems. Iran J Med Sci. 2016; 41(1): 28-36[PubMed]
  • 19. Wang J, Chen F, Liu L, Qi C, Wang B, Yan X, et al. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation. Biomaterials. 2016; 91: 11-22[DOI][PubMed]
  • 20. Higuchi Y, Kawai K, Kanaki T, Yamazaki H, Chesne C, Guguen-Guillouzo C, et al. Functional polymer-dependent 3D culture accelerates the differentiation of HepaRG cells into mature hepatocytes. Hepatol Res. 2016; 46(10): 1045-57[DOI][PubMed]
  • 21. Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 2006; 1(6): 2753-8[DOI][PubMed]
  • 22. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014; 35(3): 970-82[DOI][PubMed]
  • 23. Kurpinski KT, Stephenson JT, Janairo RR, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials. 2010; 31(13): 3536-42[DOI][PubMed]
  • 24. Petsa A, Gargani S, Felesakis A, Grigoriadis N, Grigoriadis I. Effectiveness of protocol for the isolation of Wharton's Jelly stem cells in large-scale applications. In Vitro Cell Dev Biol Anim. 2009; 45(10): 573-6[DOI][PubMed]
  • 25. Ho CM, Dhawan A, Hughes RD, Lehec SC, Puppi J, Philippeos C, et al. Use of indocyanine green for functional assessment of human hepatocytes for transplantation. Asian J Surg. 2012; 35(1): 9-15[DOI][PubMed]
  • 26. Recha-Sancho L, Semino CE. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes. J Biomed Mater Res A. 2016; 104(7): 1694-706[DOI][PubMed]
  • 27. Ye L, Wu X, Duan HY, Geng X, Chen B, Gu YQ, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone) conjugate for vascular tissue engineering scaffolds. J Biomed Mater Res A. 2012; 100(12): 3251-8[DOI][PubMed]
  • 28. Flanagan TC, Wilkins B, Black A, Jockenhoevel S, Smith TJ, Pandit AS. A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials. 2006; 27(10): 2233-46[DOI][PubMed]
  • 29. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007; 28(6): 1123-31[DOI][PubMed]
  • 30. Hou YT, Ijima H, Takei T, Kawakami K. Growth factor/heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induces angiogenesis. J Biosci Bioeng. 2011; 112(3): 265-72[DOI][PubMed]
  • 31. Nikitovic D, Zafiropoulos A, Tzanakakis GN, Karamanos NK, Tsatsakis AM. Effects of glycosaminoglycans on cell proliferation of normal osteoblasts and human osteosarcoma cells depend on their type and fine chemical compositions. Anticancer Res. 2005; 25(4): 2851-6[PubMed]
  • 32. Lee J, Yoo JJ, Atala A, Lee SJ. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials. 2012; 33(28): 6709-20[DOI][PubMed]
  • 33. Ling L, Camilleri ET, Helledie T, Samsonraj RM, Titmarsh DM, Chua RJ, et al. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene. 2016; 576(1 Pt 2): 292-303[DOI][PubMed]
  • 34. Dudas J, Bocsi J, Fullar A, Baghy K, Fule T, Kudaibergenova S. Heparin and liver heparan sulfate can rescue hepatoma cells from topotecan action. Biomed Res Inter. 2014;
  • 35. You J, Shin DS, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. Adv Healthc Mater. 2014; 3(1): 126-32[DOI][PubMed]
  • 36. Razban V, Khajeh S, Lotfi AS, Mohsenifar A, Soleimani M, Khoshdel A, et al. Engineered heparan sulfate-collagen iv surfaces improve human mesenchymal stem cells differentiation to functional hepatocyte-like cells. J Biomaterials Tissue Engin. 2014; 4(10): 811-22[DOI]
  • 37. Hussein KH, Park KM, Kang KS, Woo HM. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 2016; 38: 82-93[DOI][PubMed]
  • 38. Chevalier F, Lavergne M, Negroni E, Ferratge S, Carpentier G, Gilbert-Sirieix M, et al. Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies. Stem Cell Res. 2014; 12(3): 703-15[DOI][PubMed]
  • 39. Leijon J, Carlsson F, Brannstrom J, Sanchez J, Larsson R, Nilsson B, et al. Attachment of flexible heparin chains to gelatin scaffolds improves endothelial cell infiltration. Tissue Eng Part A. 2013; 19(11-12): 1336-48[DOI][PubMed]
  • 40. Tripathi A, Melo JS. Preparation of a sponge-like biocomposite agarose–chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model. RSC Adv. 2015; 5(39): 30701-10[DOI]
  • 41. Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials. 2000; 21(6): 581-93[PubMed]
  • 42. Sanjurjo-Rodriguez C, Martinez-Sanchez AH, Hermida-Gomez T, Fuentes-Boquete I, Diaz-Prado S, Blanco FJ. Differentiation of human mesenchymal stromal cells cultured on collagen sponges for cartilage repair. Histol Histopathol. 2016; 31(11): 1221-39[DOI][PubMed]
  • 43. Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, et al. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol. 2009; 5(10): 1159-74[DOI][PubMed]
  • 44. Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery. Expert Opin Drug Discov. 2015; 10(5): 519-40[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments